If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-250=0
a = 2; b = 14; c = -250;
Δ = b2-4ac
Δ = 142-4·2·(-250)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{61}}{2*2}=\frac{-14-6\sqrt{61}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{61}}{2*2}=\frac{-14+6\sqrt{61}}{4} $
| 3w/6-2/6=1-w/3-1/3 | | -12+e/16+0=0 | | s-3.7=6.35 | | 0.3x-8-0.6x=1 | | -5(3t-5)+2t=6t-3 | | 1/3m-1/2m=-4 | | c+3.2=7 | | 3n-6=n-3 | | 12(x+3)=22 | | 8x^2-16x-44=8 | | 12x-6=2x+15 | | 2/8x=12/25 | | 5b-2=7b-16 | | 3/x=19.3 | | z/5-4=12/4 | | 3a+6=4a+4 | | -4(x-19)=-16 | | 2/3x+4=2/3x-3 | | 18/t=3330 | | 10x-2x-9-45=-45+12x | | 8x2+13x+3=0 | | 2(8x+1)=34 | | m•6=21 | | 100(105+9.50x )=100(14.75x ) | | 8(x-5)=80 | | 9y-6=-6(y+6) | | 8(x-7)=-8 | | 6x-20=7x+x-3x | | 100=0.75x-(800+0.5x) | | 2x+2x-2+3x-10+2x+12=360 | | 66=5e+16 | | 12*m=4500 |